70 research outputs found

    Plastic Buckling Paradox: An Updated Review

    Get PDF
    It is widely accepted that the flow theory of plasticity significantly overestimates buckling stresses and strains and, in some cases, fails to predict buckling at all, while the deformation theory, which lacks physical rigor compared to the flow theory, predicts results that are in better agreement with experimental ones. The deformation theory is therefore recommended for use in practical applications of the buckling of shells. This paper aims to review in detail the causes behind the seeming discrepancies in the results predicted by both the flow and deformation theories of plasticity, and to propose an explanation for this so-called “plastic buckling paradox” on the basis of some recent research work in the field

    An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading

    Get PDF
    A large number of authors in the past have concluded that the flow theory of plasticity tends to overestimate significantly the buckling load for many problems of plates and shells in the plastic range, while the deformation theory generally provides much more accurate predictions and is consequently used in practical applications. Following previous numerical studies by the same authors focused on axially compressed cylinders, the present work presents an analytical investigation which comprises the broader and different case of nonproportional loading. The analytical results are discussed and compared with experimental and numerical findings and the reason for the apparent discrepancy on the basis of the so-called “buckling paradox” appears once again to lay in the overconstrained kinematics on the basis of the analytical and numerical approaches present in the literature

    Impact of chopped basalt fibres on the mechanical proper- ties of concrete

    Get PDF
    Basalt fibre is a novel inorganic fibre which is produced from basalt rock. In this study the impact of chopped basalt fibres on the concrete workability, compressive and tensile strength, and concrete’s modulus of rupture at 7 and 28-days was investigated. The concrete used in this research was normal strength concrete with a target compressive strength of 30/37 MPa. In this re-search, fibre reinforced concrete samples were produced using basalt chopped fibres of two quantities (4 kg/m3 and 8 kg/m3) and three different fibre lengths, namely 25.4-mm, 12.7-mm, and 6.4-mm. The test findings revealed that slump decreased as the quantity of fibres increased and shorter fibres were used. The mechanical properties of concrete were affected by the fibre dosage and length. Overall, the results indicated that adding chopped basalt fibres improved the compressive, tensile, and flexural strength of concrete, particularly at early age, while slightly reducing the compressive strength at 28-days by an average of 3.9%. The results indicated that adding 4 kg/m3 of 25.4-mm long chopped basalt fibre into concrete provided the best performance of concrete in compressive and tensile strength, and modulus of ruptur

    Numerical And Analytical Analyses Of High-Strength Steel Cellular Beams: A Discerning Approach

    Get PDF
    The behaviour of cellular beams made from normal and high strength steel with various geometries is investigated through a large number of finite element analyses and a simple mechanical model for the Web-Post Buckling (WPB) failure is developed and analysed in order to highlight the factors which influence its occurrence and development for both normal and High-Strength (HS) steels. The performed FE analyses and the proposed modelling, once calibrated, allow to shed some light on the characteristics of the phenomenon and to provide the basis of a reliable design method to predict shear buckling of web-post of cellular beams made both of mild and HS steel

    Numerical Analysis of Shear-off Failure of Keyed Epoxied Joints in Precast Concrete Segmental Bridges

    Get PDF
    Precast concrete segmental box girder bridges (PCSBs) are becoming increasingly popular in modern bridge construction. The joints in PCSBs are of critical importance, which largely affects the overall structural behavior of PCSBs. The current practice is to use unreinforced small epoxied keys distributed across the flanges and webs of a box girder cross section forming a joint. In this paper, finite-element analysis was conducted to simulate the shear behavior of unreinforced epoxied joints, which are single keyed and three keyed to represent multikeyed epoxied joints. The concrete damaged plasticity model along with the pseudodamping scheme was incorporated to analyze the key assembly for microcracks in the concrete material and to stabilize the solution, respectively. In numerical analyses, two values of concrete tensile strength were adapted: one using a Eurocode formula and one using the general assumption of tensile strength of concrete as 10%fcm. The epoxy was modeled as linear elastic material because the tensile and shear strength of the epoxy were much higher than those of the concrete. The numerical model was calibrated by full-scale experimental results from literature.Moreover, it was found that the numerical results of the joints, such as ultimate shear load and crack initiation and propagation, agreed well with experimental results. Therefore, the numerical model associated with relevant parameters developed in this study was validated. The numerical model was then used for a parametric study on factors affecting shear behavior of keyed epoxied joints, which are concrete tensile strength, elastic modulus of epoxy, and confining pressure. It has been found that the tensile strength of concrete has a significant effect on the shear capacity of the joint and the displacement at the ultimate load. A linear relationship between the confining pressure and the shear strength of single-keyed epoxied joints was observed. Moreover, the variation in the elastic modulus of epoxy does not affect the ultimate shear strength of the epoxied joints when it is greater than 25% of the elastic modulus of concrete. Finally, an empirical formula published elsewhere for assessing the shear strength of single-keyed epoxied joints was modified, based on the findings of this research, to be an explicit function of the tensile strength of concrete

    Low cycle fatigue behavior of circumferentially notched specimens made of modified 9Cr–1Mo steel at elevated temperature

    Get PDF
    Abstract During service, notched designed components such as steam generators in the nuclear power plant usually experience fatigue damage at elevated temperatures, due to the repeated cyclic loadings during start-up and shut-down operations. Under such extreme conditions, the durability of these components is highly-affected. Besides, to assess the fatigue life of these components, a reliable determination of the local stress-strain at the notch-tips is needed. In this work, the maximum strains of circumferentially notched cylindrical specimens were calculated using the most commonly known analytical methods, namely Neuber's rule, modified Neuber's rule, Glinka's rule, and linear rule, with notch root radius of 1.25, 2.5, and 5 mm, made of modified 9Cr–1Mo steel at 550 °C, and subjected to nominal stress amplitudes of ±124.95, ±149.95, and ±174.95 MPa. The calculated local strains were compared to those obtained from Finite Element Analysis (FEA). It was found that all the analytical approximations provided unreliable local strains at the notch-tips, resulting in an overestimation or underestimation of the fatigue life. Therefore, a mathematical model that predicts the fatigue lives for 9Cr–1Mo steel at elevated temperature was proposed in terms of the applied stress amplitude and the fatigue stress concentration factor. The calculated fatigue lifetimes using the proposed model are found to be in good agreement with those obtained experimentally from the literature with relative errors, when the applied stress amplitude is ±149.95 MPa, are of 1.97%,–8.67%, and 13.54%, for notch root radii of 1.25, 2.5, and 5 mm, respectively

    A Numerical Analysis on the Cyclic Behavior of 316 FR Stainless Steel and Fatigue Life Prediction

    Get PDF
    The present work aims to predict the cyclic behavior and fatigue life of 316 FR stainless steel specimens at 650 °C. First, the samples were modeled using finite element analysis under different strain amplitudes, and the obtained numerical hysteresis loops were compared against experimental results available in the literature. Then, the fatigue life was estimated using different fatigue life prediction models, namely the Coffin–Manson model, Ostergren’s damage function, and Smith–Watson–Topper model, and was compared to the experimental fatigue life. The obtained results revealed that the numerical cyclic stress–strain data are in good agreement with those obtained experimentally. In addition, the predicted fatigue lives using the previously mentioned fatigue life models and based on the provided equation parameters are within a factor of 2.5 of the experimental results. Accordingly, it is suggested that they can be used to predict the fatigue life of 316 FR stainless steel

    Buckling resistance of hot‐finished CHS beam‐columns using FE modelling and machine learning

    Get PDF
    The use of circular hollow sections (CHS) has increased in recent years owing to its excellent mechanical behaviour including axial compression and torsional resistance as well as its aesthetic appearance. They are popular in a wide range of structural members including beams, columns, trusses and arches. The behaviour of hot-finished CHS beam-columns made from normal and high strength steel is the main focus of this paper. A particular attention is given to predict the ultimate buckling resistance of CHS beam-columns using the recent advancement of the artificial neural network (ANN). FE models were established and validated to generate an extensive parametric study. The ANN model is trained and validated using a total of 3439 data points collected from the generated FE models and experimental tests available in the literature. A comprehensive comparative analysis with the design rules in Eurocode 3 is conducted to evaluate the performance of the developed ANN model. It is shown that the proposed ANN based design formula provides a reliable means for predicting the buckling resistance of the CHS beam-columns. This formula can be easily implemented in any programming software, providing an excellent basis for engineers and designers to predict the buckling resistance resistance of the CHS beam-columns with a straightforward procedure in an efficient and sustainable manner with least computational time

    Mechanical and GWP Assessment of Concrete Using Blast Furnace Slag, Silica Fume and Recycled Aggregate

    Get PDF
    Demolition waste and cement production is responsible for 36% of total waste produced on earth and 8% of the worlds CO2 emissions, respectively. Due to limited research on concrete mixes containing ternary cementitious mixes (Ground Granulated Blast-furnace Slag (GGBS) and Silica Fume (SF)) and demolition waste, the paper reviewed the mechanical properties of concrete, and structural performance of reinforced beams. Thereafter, life cycle analysis (LCA) was investigated to understand the true environmental impact, focusing on Global Warming Potential (GWP). Results show that recycled concrete aggregates (RCA) had no significant negative impact on the compressive strength, tensile strength, and modulus of rupture of concrete. The inclusion of GGBS and SF in mixes containing RCA eliminated any negative impact and for all mixes produced greater strengths in comparison to the control mix, due to the secondary reaction of Ca (OH)2 and pore refinement. The flexural behavior of the concrete beams with 0%, 25%, 50% and 100% RCA, 25% GGBS and 5% SF is similar. LCA results showed that replacing NA with 25%, 50% or 100% RCA has no significant impact on the GWP emissions. This is because of the similar emissions associated with manufacturing and processing of recycled and natural aggregates. However, replacing cement with 5% SF and 25% GGBS improves the GWP environmental response of concrete significantly. Additionally, natural aggregates have a higher GWP contribution than that of recycled concrete aggregates by almost 80% since the process of NA required quarry operation and transportation while the RCA are produced on site from an existing building waste

    Flexure Response of Stainless-Steel-Reinforced Concrete (SSRC) Beams Subjected to Fire †

    Get PDF
    This paper examines the behavior of stainless-steel-reinforced concrete (SSRC) flexural members subjected to fire. Stainless steel (SS) reinforcement has gained popularity due to its corrosion resistance and long maintenance-free life. However, there is an insufficiency of performance data and design guidance in the present literature. This paper presents a numerical assessment of SSRC structural elements using a material model based on experimental tests. A finite element model was utilized to simulate and analyze the response of SSRC beams under fire. This study compared the behavior of SSRC beams with traditional carbon-steel-reinforced concrete (CSRC) beams, demonstrating that SSRC members have a higher load carrying capacity and can sustain fire exposure for longer durations. Additionally, SSRC beams exhibited higher deflections during fire exposure compared to CSRC beams
    • 

    corecore